T.D.C. Part - I (Physics Honours) IInd Paper, (Group - B) Thermodynamics

1.	Therr (a) (c)	modynamics mostly deal with Measurement of heat energy Conversion of heat in other forms o	of ene	ergy	(b)	(b) Change of State (d) None of these			
2. one c	The valled	variables, whose knowledge specifi	cs the	e state	e of a	therm	iodyna	mical system	
	(a) (c)	Thermal variables Thermodynamic variables	(b) (d)	Ratio Irrati	onal va ional v	ariable variab	es les		
3.	Whic	h of the following is not a Thermody	nami	cal va	riable				
	(a) Volui	Pressure (b) Temperatu me	re		(c)	mass		(d)	
4.	A the	ermodynamical process is represent	by						
	(a) (d)	P-V diagram (b) Carne All of these	ot's cy	/cle		(c)	T-S	diagram	
5.	A poi	nt on a P-V diagram shows							
	(a)	a thermodynamical process		(b)	the s	tate o	f the sy	ystem	
	(c)	Workdone on the system		(d)	Work	done	by the	system	
6.	The a	area under a curve on P-V diagram r	repres	sents					
	(a)	A thermodynamical system		(b)	A cyc	clic pr	ocess		
	(c)	Workdone on a by the system		(d)	A the	ermod	ynamio	cal process	
7.	The a	area inside a closed curve on P-V dia	agram	repre	esents				
	(a)	the state of the system	(b)	Work	done	in a cy	yclic p	rocess	
	(c)	workdone on a by the system		(d)	(d) A thermodynamics process				
8.	A cur	rve drawn between two points on a l	P-V di	agram	n repre	esents			
	(a)	the state of the system	(b)	work	done o	on the	syster	m	
	(c)	Workdone by the system		(d)	A the	ermody	ynamio	cs process	
9.	Work	done on a by a system depends on							
	(a)	Initial state only	(b)	Both	a initi	al and	l Final	states	
	(c)	Final state only							
	(d)	Both on initial and final states as v	well a	s on tl	he pat	h ado	pted b	etween these	
two s	tates								
10. will b	ltas e	system undergoes contraction of ve	olume	, then	the v	vork (lone b	y the system	
	(a)	Positive (b) negative		(c)	negli	gible	(d)	Zero	
11.	The i	nternal Energy of an ideal gas depe	nds o	on					
	(a)	Pressure	(b)	Volui	me				
	(c)	Temperature		(d) Size of the molecules				ules	
12.	The i	nternal energy 'U' is a unique funct	ion be	because change in U					

proc	(a) cess	does not d	epend	upon	path		(b)	corr	esponds	s to	o an	isothermal
	(c)	depends u	pon pa	ath			(d)	corr	espond	s to a	n adial	batic process
13.	In an	adiabatic p	roces	s, thes	e is n	0						
	(a)	Change in	tempe	erature	e	(b)	exch	ange	of heat			
	(c)	Change in	intern	al ene	rgy		(d)	Wor	k done			
14.	In an	Isothermal	proce	ess, the	ere is	no						
	(a)	change in	tempe	rature	;	(b)	chan	ge in	interna	l ene	rgy	
	(c)	exchange of	of heat	t		(d)	work	done)			
15.	In an	isobaric pr	ocess,	there	is no							
	(a)	change in	pressu	ire			(b)	char	nge in v	olum	е	
	(c)	change in	tempe	rature	;	(d)	chan	ge in	interna	l ene	rgy	
16.	In an	Isochoric p	proces	s, ther	e is no	D						
	(a)	change in	pressu	ire			(b)	char	nge in te	empe	rature	
	(c)	change in	volum	e and	work	done	(d)	worl	kdone			
17.	An Id	eal gas und	lergoe	es an i	sothe	rmal c	change	e in v	volume	with	pressi	ires, then its
	press	ure (P) and	volum	e (V) v	with fo	ollow ()	$V \frac{C_v}{C_v} = co$	onstant	t			
	(a)	$p_V^{v} = constant$			(b)	3						
	(c)	$PV^{r} = consta$	nt			(d)	PV =	cons	tant			
18.	An id follow	eal gas un s the relation	dergoe ons	es and	l adia	batic	chang	je in	volume	e wit	h pres	sure, then it
	(a)	PV= const	ant				(b)	PV^{γ} =	constant=	-		
	(c)	(PV) = con	stant			(d)	PV =	cons	tant			
19.	First	law of thern	nodyna	amics	conce	rn cor	iserva	tion c	of			
	(a)	heat	(b)	work		(c)	mom	entur	n	(d)	energ	ſy
20.	If dq dW w	heat given ork, then by	to a s 7 First	ystem law of	make f therr	es a cl nodyn	nange amics	in in	ternal e	energ	y dU a	and performs
	(a) None	dQ=dU+d of these	W		(b)	dU =	dQ +	dW		(c) d	lW= dl	J+dQ (d)
21.	If P is then l	s the pressu by First law	ıre, U of the	in inte rmody	ernal vnamio	energy cs	y and	dV th	ne volur	ne in	crease	of a system,
	(a) dQ- V	dU = dQ + .dP	· P,dV	(b)	dU =	• dQ - 1	P.dV	(c) d	U = dQ	+ V	dP	(d) dU=
22.	When the ar	110 J of he nount of wo	at is a ork dor	dded t ne in	to a ga	aseous	s syste	em, in	ternal e	energ	y incre	ases by 40 J,
	(a)	150 J	(b)	70 J		(c)	110 J	ſ		(d)	40 J	
23.	A gas	has										
	(a)	One specif	ic hea	t only				(b)	Two s	pecif	ìc heat	, to
	(c)	Three spec	cific he	eats					(d)	No s	pecific	heat
24.	Mean	kinetic ene	rgy pe	er grar	n mole	ecule f	for dia	tomic	c gas			

	(a)	$\frac{3}{2}RT$	(b)	$\frac{4}{2}RT$		(c)	$\frac{5}{2}RT$			(d)	$\frac{7}{2}RT$		
25.	The d	ifference bet	tween	n molar	spec	ifics o	f a gas	s in eq	qual to	1			
	(a)	Rydberg co	onstan	ıt		(b)	Stefa	ris co	nstan	5			
	(c)	Gas consta	nt				(d)	Boltz	zmann	's cons	stant		
26.	The ra	atio of two s	pecifi	c heats	s of a	gas (γ) is alv	ways					
	(a)	negative	(b)	Zero		(c)	betw	een ze	ero an	d one	(d) Mor	e thar	n one
27.	When	heat is adde	ed to a	a syste	em, wł	nich of	f the f	ollowi	ng is r	not po	ssible		
	(a)	Internal En	ergy	of the s	syster	n incr	ease	(b)	Worl	t is do	ne by the	e syste	em
	(c)	Neither int	ernal	energy	y incre	ease n	or wo	rk is c	lone b	y the s	system		
	(d)	Internal en	ergy i	ncreas	ses an	d also	work	is doi	ne by t	the sys	stem.		
28.	First l	law of therm	lodyna	amics i	is a sp	ecial	case o	of					
	(a)	Law of con	servat	tion of	energ	ſУ		(b)	law o	of cons	ervation	of ma	ass
	(c)	Charles's la	aw					(d)	Boyle	e's law	r		
29.	A Hea	it engine cor	nverts										
	(a) Mecha	Mechanica anical energ	l ener y	gy into) heat	energ	IУ		(b)	Heat	enei	ſġy	into
	(c)	Heat energ	y into	electr	ric ene	ergy		(d)	Elect	ric en	ergy into) heat	
30.	An Ide	eal heat eng	ine wa	as ima	gined	by							
	(a) Boltzr	James Walt nann	- ,	(b)	Carn	ot		(c)	Stefa	in	(0	l)	
31.	A hea	t engine con	isists (of the :	follow	ing pa	arts						
	(a) stand	Source, Sin	ık, Wo	orking	Subst	ance		(b)	Sour	ce, si	nk and	insul	ating
	(c)	Source, Pis	ton 8-	-cylind	er			(d)	gas				
32.	The w	orking of Ca	arnot's	s engir	ne inv	olves							
	(a) proce	Two proces sses	sses	(b)	Three	e proc	esses	(c)	Four	Proce	esses	(d)	Five
33.	The ef	fficiency of a	a heat	engin	e is de	efined	as						
	(a)	the ratio of	a out	put an	d inpu	ıt							
	(b)	Heat taken	from	source	e and	heat g	jiven t	to the	sink				
	(c)	work done	in one	e cycle	and h	neat ta	ike by	the s	ource				
	(d)	heat taken	from	the sou	urce a	nd wo	ork do	ne					
34.	In a C	arnot's engi	ne										
	(a)	The temp o	of sour	ce in l	ess th	an tha	at of s	ink					
	(b)	The temp o	of sour	ce is g	greate	r than	that (of sinl	Ś				
	(C)	Source and	l sınk	are at	same	tempe	eratur	e , ,	1				
Э г	(d)		re ot s	source	and s	ink ar	e not	relate		in -			
35.	wnich		wing :	statem	ient is			carnot	s eng	ine			
	(a)	Source is a	body	of vor	unern whier	nai ca	pacity	nooite	7				
	(u)	Source is a	bouy	or ver	y mgn	i tueti	nai Ca	pacity	/				

- (C) sink is a body of very high thermal capacity
- (d) All statements are correct
- 36. Which of the following statements incorrect in a heat engine
 - The temperature of source is less than that of sink (a)
 - (b) The temperature of source is greater than that of sink
 - Source and sink remain at constant temperatures (c)
 - (d) The temp of source remains always greater than that of sink
- 37. The most efficient engine is a
 - (a) **Reversible Engine** (b) Irreversible Engine
 - (c) **Diesel Engine** (d)
- A reversible Engine is most efficient Engine. This was stated by 38.
 - (a) Einstein (b) Thomson (c) Lord Kelvin(d) Carnot
- 39. A reversible process is that process which
 - (a) Cannot be reversed
 - (b) Can be reversed by making some change in the system
 - can be reversed without making any changes in the system (C)
 - (d) None of these
- 40. A Heat Engine
 - takes heat from a hot body and gives it to a cold body (a)
 - takes heat from a cold body and gives it to a hot body (b)
 - can transfer heat in both directions (c)
 - converts work in the heat (d)
- 41. A refrigerator
 - Transfers heat energy from hot body to cold body (a)
 - Transfers heat energy from cold body to hot body (b)
 - (c) can transfer heat in both directions
 - (d) converts heat into work
- 42. The efficiency of a reversible heat engine in η_r and that of an irreversible heat engine is η_i then

 $(c)\eta_i = \eta_r$ $(d)\eta_i > \eta_r \lor \eta_i < \eta_r (bot h)$ $(a)\eta_i > \eta_r$ $(b)\eta_i < \eta_r$

- 43. In a Carnot's engine, the temperature of the working substance of the end of the cycle is
 - (a) equal to that at the beginning
 - more than that at the beginning (b)
 - (C) less than that the beginning
 - (d) determined by the amount of heat rejected at the sink
- 44. The first operation involved in a Carnot cycle is
 - (a) Isothermal expansion (b)
 - (c) Adiabatic expansion (d) adiabatic compression
- Isothermal compression

Steam Engine

- 45. The efficiency of a Carnot heat engine
 - (a) is independent of the temperature of the source and the sink
 - (b) independent of the working substance
 - (c) can be 100%
 - (d) dependent on the working substance

(b)

46. The efficiency of a Heat engine is given by

$$(a)\frac{W}{Q_1}$$

$$\frac{W}{Q_2} \qquad (c)\frac{W}{Q_1 - Q_2} \qquad (d)$$

None of these

where W= work done by the engine Q_1 = heat taken from the source Q_2 = Heat given to the sink

47. Which of the following expression of the efficiency of a Heat engine is correct ?

(a)
$$\frac{Q_1 - Q_2}{Q_2}$$
 (b) $\frac{Q_1 - Q_2}{Q_1 + Q_2}$ (c) $\frac{Q_1 - Q_2}{Q_1}$
(d) $\frac{Q_1 + Q_2}{Q_1 - Q_2}$

 $Q_1 = i$ Heat taken from source, $Q_2 =$ Heat rejected to sink

48. If $T_1 \wedge T_2$ be the temperatures of source and sink of a heat engine respectively, then it efficiency will be

$$(a)\frac{T_1-T_2}{T_1} \times 100\%$$
 (b) $\frac{T_1-T_2}{T_2} \times 100$ (c) $1 + \frac{T_2}{T_1} \times 100\%$ (d) None of these

49. The efficiency of a Carnot heat engine is 100% only when

 $(a)T_{1}=T_{2}(b)T_{1}=O^{o}K(c)T_{1}=O^{0}C(d)T_{2}=O^{0}K$

 T_1 = Temp of source , T_2 = Temp of sink

50. The temperature of the source is 127° C and that of sink is 27° C, then efficiency of this heat engine

will be

(a) 50% (b) 25% (c) 100% (d) None of these

51. In a heat engine 8 J heat is taken from the source and after doing work 49J heat is rejected to the sink, then the efficiency of this engine will be

(a) 25% (b) 40% (c) 50% (d) 80%

52. The efficiency of a Carnot engine operating with source and reservoir temp of 100°C and -23°C will

be

$$a)\frac{100-23}{100}(b)\frac{100+23}{100}(c)\frac{100+23}{373}(d)\frac{100-23}{373}$$

53. An ideal gas A and a real gas B have their volumes increased from V to 2V under isothermal

conditions. The interview energy of A will be more than that of B (a) (b) of B will be more than that of Α (c) will be same in both A and B (d) will be zero in both A and B I gm of an ideal gas expands isothermally, heat will flow 54. from the gas to the outside atmosphere (b) (a) from outside atmosphere to gas (C) (d) both (a) and (b) zero The diesel engine receives energy from diesel Vapour at constant 55. volume (a) Temperature (b) Pressure (C) (d) mass 56. The upper limit of the efficiency of a petrol engine is about 10% 40% 50% 70% (a) (b) (c) (d) 57. It the temperature of the source in increased, the efficiency of a Carnot Engine (a) (b) decreases increases (c) remains constant (d) First increases then decreases. If Δ Q represents the amount of heat given to an ideal gas and Δ W the workdone by 58. the gas in an isothermal expansion, then $\Delta W = O = \Delta Q$ (b) (d) dW < dQ(a) $\Delta W = \Delta Q$ (C) dW > dO59. Which of the following engines have 100% efficiency? (b) Diesel engine Carnot engine (a) Auto engine (C) (d) Stem Engine 60. A Carnot engine has efficiency 40% when its sink is at a temp 27°C, the Temp of the source is 273°C 300°C (C) 227°C 327°C (a) (b) (d) 61. In a Cyclic process, work done by the system is (a) Zero equal to the heat given to the (b) system More than the heat given to the system (d) less than the heat given to (c) the system The efficiency of a Carnot engine is 0.6. It rejects 20 J of heat to the sink. The work 62. done by the engine in (a) 20 J 30 J 33.5 J 50 J (b) (C) (d) 63. In a Carnot's cycle, order of the process is

(a) Isothermal expansion, adiabatic expansion, Isothermal contraction

(b) Isothermal contraction, adiabatic contraction, Isothermal expansion in

(c) Isothermal expansion, adiabatic contraction, adiabatic expansion

(d) Isothermal expansion, adiabatic expansion, Isothermal contraction adiabatic contraction

64. dW + dU = 0 is valid for

(a)

- Adiabatic process (b) Isothermal process
- (c) Isobaric process (d) Isochoric process

65. When two bodies A and B are in thermal equilibrium

- (a) The kinetic energy of each molecule of A & B will be equal
- (b) The average kinetic energy of the molecules A & B will be equal
- (c) The interval energies of the two bodies will be equal
- (d) None of these

66. In an adiabatic expansion of the gas, its

- (a) Pressure increases (b) Pressure decreases
- (c) Temperature increases (d) Temperature decreases

67. The complete cycle of an ideal reversible heat engine in called

- (a) P-V diagram (b) Carnot's cycle
- (c) Irreversible cycle (d) Thermodynamic cycle
- 68. The second law of thermodynamics implies that
 - (a) Heat can be completely converted into Mechanical energy
 - (b) Heat cannot be completely converted into mechanical Energy
 - (c) Law of conservation of energy
 - (d) Law of conservation of momentum
- 69. The Second law of thermodynamics implies that
 - (a) whole heat cannot be converted into mechanical work.
 - (b) no heat Engine can be 100% efficient
 - (c) every heat engine has efficiency 100%
 - (d) A refrigerator can reduce the temperature to absolute zero
- 70. The Zeroth law of thermodynamics is actually

(a) law of conservation of energy (b) law of conservation of momentum

- (c) Definition of heat (d) Definition of temperature
- 71. Entropy is a thermodynamically function represents
 - (a) Temperature of the system (b) Internal energy of the system
 - (c) Disorderness of the system (d) Orderness of the system
- 72. Entropy of a system

	(a)	Can be obs	erved	only		(b)	canne	ot be s	seen n	or observes
	(c)	can be see	n only			(d)	can b	e see	n and	observed
73.	In irr	regular proc	esses,	the e	entropy of the	e univ	erse			
	(a)	decreased				(b)	incre	ases		
	(c)	remains un	nchang	ged			(d)	fluctu	lates	
74.	In re	versible pro	cess, t	the en	tropy of the	unive	erse			
	(a)	decreases				(b)	incre	ases		
	(c)	remains un	nchang	ged			(d)	fluct	uates	
75.	Whic	h of the foll	owing	is not	t a thermody	vnamio	cal fun	ction		
	(a)	Enthalpy		(b)	Entropy		(c)	work	done	(d) Gibb's function
76.	A ter	nperature so	cale th	at is i	independent	of the	e work	ing su	bstan	ce is called
	(a)	Fahrenheit	: scale				(b)	Celsi	us sca	le
	(c)	Absolute so	cale of	f Temj	p.			(d)	None	e of these
77.	The a	absolute sca	le of T	Tempe	erature is als	o kno	wn as			
	(a)	Plank's sca	le					(b)	Kelvi	n scale
	(c)	Celestial so	cale					(d)	Unive	ersal scale
78.	The l	aws of therr	nodyn	amics	s are					
	(a)	Zeroth law	, First	law,	Second law					
	(b)	First law, S	Second	d law,	third law					
	(c)	Zeroth law	, First	law,	Second law,	Third	law			
	(d)	First law, S	Second	d law,	third law, f	ourth	law			
79.	The t	third law of	therm	odyna	mics is also	know	n as			
	(a)	Definition of	of Terr	ıp.			(b)	Nern	st Hea	at theorem
	(c)	law of cons	servati	ion of	energy		(d)	conv	ersion	of heat into work
80.	Nern	st heat theo	orem in	n rela	ted to					
	(a)	law of cons	servati	ion of	energy		(b)	Temp	peratu	re of heat
	(c)	Unattainab	oility o	fabso	olute zero		(d)	None	e of the	ese
81.	Entro	opy change ((ds) is	expre	essed as					
	(<i>a</i>) <i>ds</i> =	$=\frac{dQ}{R}(b)dS=\frac{dQ}{T}$	$\frac{2}{c}(c)ds =$	$=\frac{dT}{R}[d]$	$ds = \frac{R}{dT}$					
	wher	dQ = cha	nge of	f heat	, $R = gas$	s cons	tant			
82.	In an	adiabatic p	rocess	5						
	(a)	Entropy ch	ange i	is max	kimum	(b)	Entro	opy ch	ange i	is minimum
	(c)	Entropy ch	ange i	is Zer	0	(d)	None	of the	ese	
83.	Maxv	well gave ho	w mai	ny nui	mber of Thei	rmody	namic	al rela	ations?	2
	(a)	Two	(b)	Thre	е	(c)	Four		(d)	Five

84. Which of the following Tuermodynamical relation is incorrect?

$$(a)\left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial P}{\partial T}\right)_{V} \qquad (b)\left(\frac{\partial S}{\partial p}\right)_{T} = -\left(\frac{\partial V}{\partial T}\right)_{P} \\ (c)\left(\frac{\partial T}{\partial V}\right)_{S} = \left(\frac{\partial P}{\partial S}\right)_{V} \qquad (d)\left(\frac{\partial T}{\partial P}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{P}$$

85. Which of the following statement in incorrect

- (a) Entropy can be expressed as a function of P & T
- (b) Entropy can be expressed as a function of T & V $\,$
- (c) Entropy can be expressed as a function of T & U (U = Internal Energy)
- (d) All statement are correct
- 86. Which of the following is called First T.ds equation

$$(a)T.ds = C_{p}dT + T\left(\frac{\partial V}{\partial T}\right)_{p}(b)T.ds = C_{p}dT - T\left(\frac{\partial V}{\partial T}\right)_{p}$$

(c) $T.ds = C_{V}dT + T\left(\frac{\partial P}{\partial T}\right)_{v}dv$ (d) $T.ds = C_{V}dT - T\left(\frac{\partial P}{\partial T}\right)_{v}dv$

87. Which of the following is second T.ds equation

$$(a)T.ds = C_{p}dT + T\left(\frac{\partial V}{\partial T}\right)_{p}(b)T.ds = C_{p}dT - T\left(\frac{\partial V}{\partial T}\right)_{p}$$
(c) $T.ds = C_{V}dT + T\left(\frac{\partial P}{\partial T}\right)_{v}$
(d) $T.ds = C_{V}dT - T\left(\frac{\partial P}{\partial T}\right)_{v}$
dv

88. Using Maxwell's Thermodynamical relations, which of the following law can be derives

- (a) Boyle's law (b) Charle's law
- (c) Ideal gas equation (d) None of these

89. Which of the following relation can be derived using Maxwell's relation

$$(a)T.ds = C_{p}dT + T\left(\frac{\partial V}{\partial T}\right)_{p}(b)\left(\frac{\partial P}{\partial T}\right)_{sat} = \frac{L}{T(V_{1} - V_{2})}$$
(c) $\left(\frac{\partial V}{\partial T}\right)_{sat} = \frac{L}{T(P_{2} - P_{1})}$
(d) $T.ds = C_{V}dT - T\left(\frac{\partial P}{\partial T}\right)_{v}$

90. Which of the following relation is incorrect

- (a) $C_P C_V = R$ (b) $C_P C_V = T.V.E.\sigma^2$
- (c) $C_{P} Cv = -T.V.\sigma E^{2}$ (d) $C_{P} Cv = T.V.\sigma V^{2}$

91. Phase Transition are of

(a) Four types(b) Three types(c) Two Types(d) Only one type92. First order phase Transition involves

- (a) Change of state (b) Change of Temperature
- (c) Change of Pressure (d) None of these

93.	Whic	h equation is followed in First	ordei	r phas	e trans	sition		
	(a)	Ernest Equation	(b)	Maxv	vell's e	equati	on	
	(C)	Clausius Clapeyron Equation	(d)	None	e of the	ese		
94.	Whic	h equation is followed in seco	nd ord	ler ph	ase tra	ansitic	n	
	(a)	Ernest equation	(b)	Claus	sius Cl	apeyr	on Eq	uation
	(C)	Maxwell's equation		(d)	None	of the	ese	
95.	What	is the condition for phase equ	uillibri	ium				
	(a)	$\mathbf{G}_1 = \mathbf{G}_2 \qquad \textbf{(b)} \qquad \mathbf{G}_1 \neq \mathbf{G}_2$		(c) H	$H_1 = H_2$	2	(d)	$H_1 \neq H_2$
	G = C	Gibb's function $H = H$	Helmh	oltz F	unctio	n		
96.	Whic	h of the following is an examp	le of I	First o	rder p	hase t	transi	tion
	(a)	Transition of Iron from param	nagne	tic sta	te to F	Ferror	nagne	etic State
	(b)	Transition from liquid Heliun	n I to I	liquid	Heliur	n II		
	(C)	Liquid-gas transition						
	(d)	None of these						
97.	Whic	h of the following is an examp	le of s	second	l order	r phas	e Tra	nsition
	(a)	Liquid gas transition			(b)	Solid	-Liqui	d transition
	(C)	Transition from liquid He I to	He I	[(d)	None	of th	ese
98.	In se	cond order phase Transition						
	(a)	Internal energy does not cha	nge					
	(b)	Specific volume does not cha	nge					
	(C)	No heat is evolved or absorb	ed					
	(d)	No change in Heat, Sp- volur	ne and	d Inter	rnal en	nergy		
99.	In Fir	est order phase transition						
abso	(a) rbed	Specific volume does not cha	nge		(b)	No he	eat is	evolved or
	(C)	Temperature changes		(d)	Temp	. rem	ains c	onstant
100.	The h	neat evolved or absorbed in Fi	rst or	der ph	ase tra	ansiti	on is o	called
	(a)	Specific Heat		(b)	Heat	capac	ity	
	(C)	Latent heat	(d)	None	e of the	ese		
101.	Later	nt heat is actually the heat evo	olved o	or abs	orbed	in		
	(a)	change of phase (b)	Chan	ge in '	Temp.			
	(C)	Change in pressure	(d)	None	e of the	ese		
102.	Temp	perature is a measure of hotne	ess or	coldne	ess of a	an obj	ect is	based on
	(a)	Zeroth law of thermodynamic	CS		(b)	First	law o	f Thermodynamics
	(C)	Second law of Thermodynam	ics		(d)	Newt	on's l	aw of cooling

103. In adiabatic expansion of a gas

- (a) Its pressure increases (b) Its temperature increases Its temperature decreases Newton's law of cooling (C) (d) 104. If for a gas $\frac{R}{C_v} = 0.67$, this gas is made of molecules which are diatomic (c) pdyatomic (d) Mixture monoatomic (b) (a) of all 105. The process in which the heat is not transferred from one state to another is isothermal process (b) adiabatic process (a) **Isobaric** process isochoric process (C) (d) 106. A given system undergoes a change in which the work done by the system equals the decrease in its internal energy. The system must have undergone an isothermal change (b) adiabatic change (a) (C) isobaric change (d) isochoric change 107. Entropy of a thermodynamic system does not change when the system in used for Conduction of heat from higher to lower temperature (a) Conversion of heat into work isobarically (b) (C) Conversion of work into heat isocuorically Conversion of heat into internal energy (d) 108. Air in a cylinder is suddenly compressed by a piston, which is then maintained at the same position. After some time, the Pressure will increase (b) Pressure will decreases (a) (C) Pressure will remain the same (d) pressure becomes zero 109. During adiabatic process, pressure (P) verses density (p) relation is $P^{\gamma} \rho^{1+\gamma} = constant$ $(a) P \rho^{\gamma} = constant$ (b) $P^{1+\gamma}\rho^{\gamma} = constant$ (d) $P \rho^{-\gamma} = constant$ (C) 110. Which of the following is not a thermodynamic co-ordinate Ρ Т V (a) (b) (C) (d) R 111. The principle of increase in entropy comes from (a) First law of entropy (b) second law of thermodynamics (C) Zeroth law of thermodynamics (d) Third law of thermodynamics 112. Will a heat engine work if the temperature of the is at $O^{0}K$ (b) No (C) may work (d) may not work (a) ves 113. What is the lowest possible temperature in Kelvin scale -273 K (b) -373 K -273°C -373°C (a) (C) (d) 114. Why thermodynamic scale of temperature is called absolute scale of temp, because The temp. in this scale do not depend on working substance (a) The temp. in this scale depend on working substance (b) This scale in very useful (C)
 - (d) This scale is very convenient

115.	Why	Carnot's eng	ine is p	pract	ically :	not ac	chieva	ble be	cause		
	(a)	It is very lar	rge in s	size			(b)	it use	es a re	al gas	
	(C)	It can be ac	hieved	usin	g Idea	l gas	only	(d)	All of	these	2
116.	Whic	ch of the follo	wing s	taten	nent is	corre	ect				
	(a)	In a reversi	ble pro	cess,	entro	py ch	ange	in neg	ative		
	(b)	in an irreve	rsible <u>p</u>	proce	ess, en	tropy	chang	ge is n	egativ	re	
	(C)	In a reversi	ble pro	cess,	entro	py ch	ange	in zero	C		
	(d)	In an irreve	rsible j	proce	ess, en	tropy	chan	ge is z	ero		
117.	Entr	opy is expres	sed in	term	s its						
	(a)	Absolute va	lue				(b)	Chan	ge in	entrop	<u>by</u>
	(C)	Change in t	empera	ature	!		(d)	Caloi	ric		
118.	A bo	dy at 427°C	will hav	ve wł	nich te	emper	ature	in Abs	solute	scale	
	(a)	327K	((b)	700K		(C)	773 I	K	(d)	None of these
119.	If ter in Ke	mp difference elvin scale wi	e to two ll be	o bod	ies is	10 is (Celesi	ius sca	le, the	en the	ir temp difference
	(a)	Zero	((b)	373		(C)	10		(d)	283
120.	Whic	ch of the follo	wing is	s a th	ermod	lynam	nics po	otentia	al		
	(a) Func	Volume ction	((b)	Press	ure	(C)	Entro	ору	(d)	Helmholtz
121.	IfRi	is gas constar	nt for 1	gm	mole,	C _P and	d C _v a	re two	o speci	ific he	ats of a gas, then
	(a)	$C_P - C_V = R$	((b)	C _P - C	$L_v < R$		(C)	C _P - C	C _v =0	(d) $C_P - C_V > R$
122.	It ∆Q then)>0, when he , increase in i	at flow interna	rs inte al ene	o a sys ergy of	stem, the s	∆W>0 system), whe 1 is	n wor	k is do	one on the system,
	(a)	$(\Delta W + \Delta Q)$	((b)	$(\Delta W - \Delta W)$	AQ)		(C)	(ΔQ-Δ	W)	(d) $-(\Delta Q + \Delta W)$
123.	If C_P	$> C_{\rm V}$ and $C_{\rm P}$ -	$C_v = 2$	Cal/	(gm.m	ole.K)) and	$\frac{C_p}{C_v} = 1$.66 th	en, w	hich of the
	follo	wing in corre	ct								
	(a)	$C_{P}=4, C_{V}=2,$	$\frac{C_p}{C_v} = 2$	2				(b)	C _P =	5, C _v =	$=3, \ \frac{C_p}{C_v} = \frac{5}{3}$
	(C)	$C_{P}=6, C_{V}=2,$	$\frac{C_p}{C_v} = 1$	3				(d)	None	e of the	ese
124.	A he sink,	at engine tak , then efficien	es 100 .cy of t	J hea he er	at fron Igine i	n the s	heat s	source	and g	ives 6	0 Joule heat to the
	(a)	<u>5</u> 3	(b) $\frac{2}{5}$	<u>2</u> 5		(C)	<u>3</u> 5		(d)	None	e of these
125.	A he the e	at engine is v engine is	vorking	g betv	ween t	cempe	eratur	e 300	K and	100K.	. The efficiency of
	(a)	33.3%	((b)	40%		(C)	55%		(d)	66.6%
126.	In Ca	arnot's engine	e, the p	oistor	ı is su	ppose	d to n	nove iı	nside t	the cyl	linder
	(a)	with high fr	iction			(b)	with	very la	aw frio	ction	

	(a)	Is compressed ad	$compressed \ adiabatically$				pande	ed adiabatica	lly	
	(C)	is compressed iso	othermally	7	(d)	is ex	pande	ed isotherma	lly	
128.	In po	rous plug experim	ient, the g	jas is pa	ssed					
	(a)	from High pressu	ire region	to low j	press	ure reg	gion			
	(b)	from low pressur	e region t	o high p	oressu	ire reg	jion			
	(C)	from high temp r	egion to l	ow temp	o regi	on				
	(d)	from low temp re	gion to hi	gh temp	o. reg	ion				
129.	The l	ow temperature is	obtained	using						
	(a)	liquefaction of He	elium	(b)	lique	efactio	n of F	Iydrogen		
	(C)	liquefaction of Ox	xygen	(d)	lique	efactio	n of C	Carbon-di-oxi	de	
130.	The l	ow temperature is	produced	d by usii	ng					
	(a)	Compton effect		(b)	Joule	e Thon	nson e	effect		
	(C)	Zeeman effect			(d)	None	e of th	nese		
131.	The p	oorous plug experi	ment in e	xplained	d by					
	(a)	Joule Thomson E	ffect	(b)	Zeer	nan ef	fect			
	(C)	Compton effect		(d)	Non	e of th	ese			
132.	In Jo	ule Thomson effec	t							
	(a)	Cooling is produc	ced		(b)	Som	e time	es coding, so	me ti	imes
	heati	ng			_			_	_	
	(C)	Heating is produce	ced		(d)	Tem	perati	ure does not	chan	ige
133.	The 7	Temperature of inv	version is	given by	У					
	$(a)T_i =$	$=\frac{1a}{Rb}(b)T_i=\frac{2b}{Ra}(c)T_i=\frac{2}{2}$	$\frac{R}{2ab}(d)T_i = \frac{2}{2ab}$	2 a ² Rb						
134.	Cooli	ng in produced in	Joule Tho	omson ef	ffect i	f Roon	n Tem	ıp.		
	(a)	is greater than Te	emp. of in	version		(b)	isles	s than Temp	. of i	nversion
	(C)	Equal to temp of	inversion			(d)	Non	e of these		
135.	Heat	ing is produced in	Joule The	omson ef	ffect i	f Roor	n Tem	ıp is		
	(a)	greater than Tem	np of inver	rsion		(b)	Less	s than Temp o	of inv	version
	(C)	Equal of temp of	inversion			(d)	Non	e of these		
136.	Whic	h of the following	gases sho	w heati	ng eff	fect is	Joule	Thomson eff	ect	
	(a) NO ₂	H_2 and O_2	(b) NC	P_2 and C	O_2		(C)	H_2 and He	(d)	He and
137.	Hydr inver	ogen produces hea sion is	ating in Jo	oule Tho	mson	effect	: beca	use its tempe	eratu	ire of
	(a) nega	less than tive	(b) gre	eater tha	an		(C)	equal to		(d)

by an external force

(d)

frictionless

127. In porous ping experiment, the gas

(C)

- 138. The temperature of inversion of CO2 is less than the Room temperature, then in Joule thomson effect, it will produce
 - Heating Cooling (a) (b)
 - (C) No change in temp. (d) periodic heating and cooling
- 139. Oxygen produces cooling in Joule thomson effect because its temperature of inversion is
 - (a) less than (b) greater than (C) equal to (d) negative
- 140. If P_1 , V_1 and P_2 , V_2 are pressure and volume respectively of a gas, before and after passing through a porour plug, then the net external work done by the gas is
 - (b) $(P_2V_2 P_1V_1)$ (a) $(P_1 V_1 - P_2 V_2)$
 - $(P_1V_1 + P_2V_2)$ (d) $(P_1V_2 - P_2V_1)$ (C)
- 141. In a porous plug experiment, the work done by the gas against the inter-molecular attractive forces

$$(a)\left(\frac{a}{V_{2}}-\frac{a}{V_{1}}\right)(b)\left(\frac{a}{V_{1}}-\frac{a}{V_{2}}\right)(c)\left(\frac{a}{V_{1}^{2}}-\frac{a}{V_{2}^{2}}\right)(d)\left(\frac{a^{2}}{V_{1}}-\frac{a^{2}}{V_{2}}\right)$$

where a is Vander wail's constant

142. In porous plug experiment, work done by the gas results

increase in temp (b) decrease in temp (c) change in temperature (d) All (a) of these

143. Enthalpy of a thermodynamical system is given by

(a) (U+P.V)(b) (P-UV) (C) U-PV (d) (P+UV)

144. The enthalpy of a system is conserved in

- Isothermal process (a) (b)
- throttling process (C) (d)

145. Helmholtz Free energy function in given by

F = U + TS(b) F = U - T.S.(c) F = S - UT (d) F = S + UT(a)

146. Gibbs function is given by

- a = U + PV-TSa = U - PV + TS(a) (b)
- G = U + PT SV(d) G = U - PT + SV(C)

147. Gibbs function of a system does not change in

- Any thermodynamical process (b) (a)
- (C) Phase Transition process (d)
- 148. Gibb's Helmholtz equation is given by

$$(a)F = U - T\left(\frac{\partial F}{\partial T}\right)_{v} \qquad (b)F = U + T\left(\frac{\partial F}{\partial T}\right)_{v} (c)F = H + T\left(\frac{\partial F}{\partial T}\right)_{v} \qquad (d)F = H - T\left(\frac{\partial F}{\partial T}\right)_{v}$$

149. Heat cannot flow by itself from a body at lower temp to a body of higher temp, this is explained by

- adiabatic process
- None of these

- **Isobaric process**
 - **Isochoric process**

(a) First law of thermodynamic thermodynamics

- (b) Zeroth law of
- (c) Second law of thermodynamic (d) All of these
- 150. Which of the following statement is incorrect
 - (a) Practically, absolute zero temperature can not be reached
 - (b) Negative value of temp. is possible in Absolute scale
 - (c) Negative value of temp. is impossible in Assolute scale
 - (d) Al l value of temp are possible in Absolute scale

T.D.C. Part - I (Physics Honours) IInd Paper (Group - A)

1.	Temp	perature O ^o K means temperature												
	(a)	0°C	(b)	273°C	(c)	-273°C	(d)	None	of					
these)													
2.	Ther	rmal conductivity of a material increases with												
	(a)	Rise in tem	perat	ure	(b)	Increase in lengt	h							
	(c)	decrease ir	ı leng	th	(d)	None of these								
3.	Stead	dy state is re	eache	d, when,										
	(a)	all parts of	a bod	ly has same tempe	eratur	е								
	(b)	all parts of	a bod	ly has constant ter	mpera	ture								
	(c)	the temper	rature	of all parts of a be	ody is	variable								
	(d)	None of these												

4.	In st	ceady	state,

- (a) No heat flows through a body
- (b) Heat flow is equal to the heat loss
- (c) More heat loss takes place than heat flow
- (d) Heat flow is greater than the heat loss
- 5. The amount of Heat flowing through a layer of a body in steady state is
 - (a) Proportional to the width of the layer
 - (b) Inversely proportional to the width of the layer
 - (c) Does not depend on the width of a layer, but it remains constant
 - (d) inversely proportional to the area of cross section of the layer
- 6. The coefficient of thermal conductivity of a material indicates
- (a) How it will flow the heat through it (b) How it opposes the flow at heat
 - (c) How it conducts elective current (d) None of these
- 7. The unit of the coefficient of thermal conductivity is
 - (a) Cal, m^{-1} , sec^{-1} ok (b) Joule, $m^{-1}sec^{-1}k^{-1}$
 - (c) Joute m, $Sec^{-10}k$ (d) Cal. m. sec^{-1} ok
- 8. The standard Fourier Equation holds for
 - (a) Steady flow of heat (b) periodic Flow of heat
 - (c) Both types of flow of heat in steady state
 - (d) Rectangular flow of heat in steady state
- 9. The thermometric conductivity of heat of a material indicates, How
- (a) Heat will flow through that material (b) Temperature will change with distance
 - (c) Rate of change of temperature (d) None of these
- 10. The variation of temperature of Earth due to solar radiation is
- (a) steady (b) Periodic (c) constant (d) Irregular
- 11. In deriving Fourier's equation of rectangular flow, it is anumed that, the heating is
- (a) constant(b) Periodic(c) steady(d) Irregular12. The diffusivity of a material is expressed as

(a)
$$\frac{K}{es}$$
 (b) $\frac{e}{k \cdot s}$ (c) Kes (d) $\frac{s}{ke}$

where $K = \text{ cooficient of thermal conductivity}}$ S = Specific heat

P = Density of that material

13. According to Newton's law of cooling, the rate of coding of a hot body is proportional to the

- (a) temperature of the hot body
- (b) Difference of temperature of the hot body and its surrounding
- (c) temp of the surrounding
- (d) None of these
- 14. If a rod of infinite length is heated from one end, then in steady state, the temperature of its often end will be equal to the temperature of the
 - (a) heater (b) Surrounding (c) Zero (d) infinite
- 15. The radiation loss of a hot body do not depend on its
 - (a) Temperature (b) Surface area
 - (c) temperature of its surrounding (d) Weight
- 16. According to the kinetic theory of gases, the volume of the gas molecules is regarded as
 - (a) Very large (b) very small (c) negligibly small (d) None of these
- 17. According to the kinetic theory of gases, the intermolecular fora acting between any two molecular is
 - (a) Attractive (b) Repulsive (c) strong (d) negligible
- 18. The equation of state of an Ideal gas is given by

(a)
$$PV = \frac{R}{T}$$
 (b) $PV = RT$ (c) $P/V = = \frac{R}{T}$ (d) $PT = \frac{R}{V}$

19. The assumptions of the kinetic theory of gases are valid for an

(a) Ideal gas (b) Real gas (c) All types of gases (d) All states of matter

20. The equation of State of a real gas is

(a)
$$\left(P-\frac{a}{v^2}\right)(V+b)=RT$$
 (b) $\left(P-\frac{a}{v^2}\right)(V-b)=RT$

(c) i (d) i

where, a, b, R are constants

- 21. In Vander wall's Equation of State, the correction in the volume of the gas (in Ideal gas equation of state) in due to
 - (a) Finite intermolecules force (b) Finite size of gas molecules
 - (c) Change in pressure of the gas (d) None of these
- 22. In the real gas equation of state, the correction in pressure (in Ideal Equation of State) is due to
 - (a) small volume of the gas (b) Pressure variation force
 - (c) Finite intermolecular force(d) negligible size of the gas molecules
- 23. The experimental graph between P and V at a constant temperature for a real gas was drawn by

	(a)	Boyle	(b)	Charles		(c)	Audrew	(d) Vander wool
24.	The expe	theoretical curve erimental curves a	es calo .t	culated from	m Van	der W	ool's equat	ion differ from the
	(a)	Very high temper	rature	S		(b)	low temper	ratures
	(c)	All temperatures			(d)	Dono	t differ	
25.	The expl	difference of theo ained by	retica	l results of	Vande	r wool	adn experii	mental results were
	(a)	Experimental co	nditio	n		(b)	Correction	in formula
	(c)	Super heated lig	uid of	super cool	ed vapo	our		
	(d)	Super cooled liqu	ıid an	d super hea	ated va	pour		
26.	The	velocity distributi	on for	mula for ga	as mole	cules	was given b	У
	(a)	Maxwell Thomson	(b)	Planck		(c)	Stefan	(d)
27.	The	Maxwell velocity	distrik	oution form	ula wa	s deve	loped by usi	ing
	(a)	quantum mechar	nics		(b)	Theo	ry of probab	oility
	(c)	Quantum Statisti	cs		(d)	Theo	ry of Uncert	ainty
28.	Acco of a	ording to Maxwell gas molecule is	veloc	ity distribu	tion for	rmula,	the Root M	ean square velocity
	(a)	$\sqrt{\frac{8KT}{m}}$ (b)	$\sqrt{\frac{3 KT}{m}}$	- (c)	$\sqrt{\frac{3 km}{T}}$	-	(d) $\frac{8 km}{T}$	
	wher	re k = Boltzman c	onsta	nt, T =	Tempe	rature	e m = mass o	of a gas molecule
29.	Acco unit	rding to Maxwell ` volume having vel	Veloci ocity]	ty distribut ying betwe	tion for en 'C'	mula t and '((the number, C+dc) in giv	of molecules per en by

$$(a)dn=4\lambda n a^{3} e^{-bc^{2}}c^{2} dc$$
 (b) $dn=4\lambda n a^{3} e^{bc^{2}}c^{2} dc$

(c)
$$dn=4\lambda na^2 e^{-bc^2}c^3 dc$$
 (d) None of these

30. The "most probable velocity" in given by

(a)
$$\sigma = \sqrt{\frac{2KT}{m}}$$
 (b) $\sigma = \sqrt{\frac{3KT}{m}}$ (c) $\sigma = \sqrt{\frac{8KT}{m}}$ (d) $\sigma = \sqrt{\frac{KT}{m}}$

31. The relation between R M, S velocity (c) and Most probable velocity (σ) is given by

(a)
$$\sigma = \sqrt{\frac{3}{2} \cdot C}$$
 (b) $\sigma = \sqrt{\frac{2}{3} \cdot C}$ (c) $\sigma = \sqrt{\frac{2C}{3}}$ (d) $\sigma = \sqrt{\frac{3C}{2}}$

- 32. The most probable velocity of gas molecules
 - (a) Does not depend on temperature
 - (b) Increases as Room Temperature increases
 - (c) Increases with increase in temperature
 - (d) Increases as Room temperature increases
- 33. The K.M.S. velocity of gas molecules

- (a) Does not depend on temperature
- (b) Does not depend on mass of gas molecules
- (c) Increases with increase in temperature
- (d) Decreases with increase in temperature
- 34. The molecular velocities are lying between
 - (a) Zero and one Zero and infinity (b)
 - (d) Zero and $\sqrt{\frac{2KT}{m}}$ Zero and $\sqrt{\frac{8KT}{m}}$ (c)
- 35. The distance travelled between two successive molecular collision is called
- Free path (b) (a) Mean free path (c) Mean path (d) Path length
- The motion of gas molecules in Free path is 36.
 - Accelerated motions (b) (a)
 - uniform motion (c) (d)
- 37. The mean Free path of the gas molecules
 - (a) Increases as size of molecules increases
 - (b) Decreases as size of molecules increases
 - Does not depend on the size of molecules (c)
 - (d) Is universal constant
- 38. The mean free path of gas molecule increases as
 - Molecular density increases (a)
 - (b) Molecular density decreases
 - Whether Molecular density in increased or decreases (c)
 - (d) None of these
- 39. The expression for Mean free path is

$$(a)\lambda = \frac{1}{n\lambda d^2}$$
 $(b)\lambda = \frac{\sqrt{2}}{n\lambda d^2}$ $(c) \lambda = \frac{1}{\sqrt{2n\lambda d^2}}$ $(d) \lambda = \frac{1}{\sqrt{2,n\lambda d^2}}$

40. The Mean Free path of gas molecules can be determined by the method of

(a) Stern (b) Maxwell (c) Born (d) Boltzman 41. According to the "law of equipartition of energy" the Energy per degree of freedom is

(b) $\frac{1}{KT}$ (c) $\frac{1}{2}KT$ (d) $\frac{2}{KT}$ (a) KΤ

42. In law of equipartion of energy, all types (Degrees) of freedom have

- (a) (b) **Different energies** same energy
- (c) same energy Irrespective of temperature
- (d) Same energy at a particular temperature

- Half accelerated motion
- None of these

43.	In a r	nore atomic	gas, t	the number	of deg	rees c	of freedom o	f each	molecule is
	(a)	One	(b)	Two	(c)	Three	е	(d)	Five
44.	In a c	liatomic gas	s, the 1	number of d	egree	of fre	edom of eac	h mole	ecule is
	(a)	One	(b)	Two	(c)	three)	(d)	Five
45.	The r	nolar specif	ìc hea	t of a monoa	atomic	gas is	5		
	(a)	$\frac{3}{2}R$	(b)	3R	(c)	$\frac{5}{2}R$		(d)	5R
46.	The r	nolar specif	ìc hea	t of a diaton	nic gas	s mole	cule is		
	(a)	$\frac{3}{2}R$	(b)	3R	(c)	$\frac{5}{2}R$		(d)	5R
47.	The r	ratio of two s	specif	ic heats (C_P	& C _v)	of a m	ono atomic	gas in	
	(a)	1.4	(b)	1.66	(c)	1.33		(d)	1
48.	Avog	adro's Num	ber is	a					
	(a)	Constant fo	or all g	yas		(b)	Constant fo	or a pa	articular gas
	(c)	Universal o	consta	nt		(d)	Variable		
49.	Avog	adro's Num	ber is	equal to, the	e num	ber of	molecules		
	(a)	per unit ma	ass			(b)	Per kg. mo	lecule	
	(c)	per atomic	weigł	nt		(d)	None of the	ese	
51.	The v	value of Avo	gadro	s' number in	1				
	(a)	6.023×10^{23}	³ mole	cules/kg mo	le	(b)	6.023×10^{26}	³ mole	cules/kg mole
	(c)	6.032×10^{26}	³ mole	cules/kg mo	le	(d)	6.032×10^{23}	³ mole	cules/kg mole
52.	The A	Avogadro's r	numbe	er can be det	termin	ed by	using		
	(a)	Boyle's law	T		(b)	Char	le's law		
	(c)	Brownian r	notion	1	(d)	Recti	linear motic	n	
53.	The F	First observe	er of E	Brownian mo	otion w	vas a			
	(a)	Chemist			(b)	Physi	icist		
	(c)	Botanist			(d)	Zoolo	ogist		
54.	Brow	nian motion	mea	ns					
partic	(a) cles	regular mo	tion o	f particles		(b)	regular acc	celerat	ed motion of
partic	(c) cles	Irregular r	otatio	nal motion		(d)	Irregular re	otatio	nal motion of
55.	Avog	adro's Num	ber (N	I), gas const	ant (R) and	Boltzman co	onstan	t (K) are related as

$$(a)N = \frac{R}{K}(b)N = \frac{K}{R}(c)NRK = constant(d)NRK = 0$$

- 56. The non-equillibrium motion of gas particles give rise to the phenomenon of
 - (a) Viscosity (b) Elasticity (c) Surface Tension (d) None of these

57. Which of the following is not a Transport phenomenon

(a) Viscosity (b) Conductivity (c) Super conductivity (d) Diffusion

- 58. The phenomenon of viscosity arises when
 - (a) The Average Velocity of gas molecules is not same everywhere
 - (b) The density of gas is not same everywhere
 - (c) The Temperature of gas is not same everywhere
 - (d) the gas is in equilibrium
- 59. The phenomenon of Thermal conductivity arises when
 - (a) The Average velocity of gas particle is not same every where
 - (b) The density of gas is not same everywhere
 - (c) The Temperature of gas is not same everywhere
 - (d) The gas is in thermal equilibrium
- 60. The phenomenon of Diffusion takes place when
 - (a) The average velocity of gas molecule is not same everywhere
 - (b) The density of gas is not same everywhere
 - (c) The temperature of gas is not same every where
 - (d) The gas is in equilibrium state
- 61. The phenomenon of viscosity in gases in due to
 - (a) transfer of momentum (b) Transfer of Energy
 - (c) Transfer of mass (d) None of these
- 62. The phenomenon of Thermal conductivity arises due to
 - (a) Transfer of momentum (b) Transfer of Energy
 - (c) Transfer of mass (d) None of these
- 63. The phenomenon of Diffusion is gases takes place due to
 - (a) Transfer of momentum (b) Transfer of Energy
 - (c) Transfer of mass (molecules) (d) None of these
- 64. The coefficient of viscosity of a gas is given by $\eta =$
 - (a) $\frac{1}{3} \frac{\rho c}{\lambda}$ (b) $\frac{1}{3} \rho c \lambda$ (c) $\frac{1}{3} \frac{\lambda}{\rho c}$ (d) $\frac{1}{3 \rho c \lambda}$

where c=Average velocity, ρ -Density $\wedge \lambda$ -Mean free path

65. The coefficient of viscosity of a gas

(a) increases as pressure decreases(b) Decreases as pressure decreases

(c) Independent of pressure (d) None of these

66. The coefficient of viscosity of a gas

Increases as Temperature increase (b) Decreases as Temperature (a) increases is independent of pressure (c) 67. The relation between thermal conductivity (IK), specific heat (cv) and coefficient of viscosity of a gas is (b) $\frac{\eta}{KC_v} = 1$ (c) $\frac{K}{\eta C_v} = 1$ (d) $\frac{C_v}{Kn} = 1$ $(a)K\eta C_{v}=1$ 68. The Experimental value of the ratio $K/\eta C_{\nu}$ for a mono atomic was found to be 1.9 2.5(a) 1 (b) (c) (d) 1.569. The experimental value of the ratio $K/\eta C_{v}$ for a diatomic gas was found to be (a) 1 (b) 1.5 (C) 1.9 (d) 2.570. In the phenomenon of diffusion, the gas molecules more From higher density region to lower density region (a)

(b) From lower density region to higher density region

- (c) No movement
- (d) Both way movement

71. The expression for coefficient of Diffusion was given by

(a) Maxwell (b) Mayer (c) Michelson (d) None of these

72. The relation between Diffusion Coefficient (D), coefficient of viscosity (η) and density (ρ) of gas is

 $(a)\eta = \frac{\rho}{D}(b)D = \frac{\eta}{\rho}(c)\rho = \eta D(d)\dot{c}$

- 73. The ratio of coefficient of thermal conductivity (K) and electrical conductivity (σi is
 - (a) constant at all temperature
 - (b) constant at a particular temperature
 - (c) constant for al metals
 - (d) constant for all metals at a particular temperature
- 74. Both the phenomenon of thermal conductivity and electric conductivity of metals are due to movement of

(a) atoms (b) Molecules (c) Electrons (d) Free electrons

75. According to wiedmann -Frantz law

$$(a)\frac{K}{\sigma T} = constant(b)\frac{K}{\sigma} = constant(c)\frac{K}{T} = constant(d)\dot{c}$$

76. According to kinetic theory of gases, the specific heat (C_v) of a solid in

(a) R (b) R/2 (c) 2R (d) 3R

77. Siv Einstein explained the theory of specific heat by

	(a)	Kinetic theory	(b)	Theo	ory of a	relativity			
	(C)	Plank's Radiation formula		(d)	None	e of these			
78.	Siv Ei	instein considered that the el	ectron	s of a	solid v	vibrate in			
	(a)	Irregular Motion	(b)	Simp	ole Ha	rmonic Moti	on		
	(C)	Damped Harmonic Motion		(d)	Forc	ed Harmonio	c Moti	on	
79.	The e	mission of radiation takes pla	ace du	e to					
	(a)	Molecular transition		(b)	Nucl	ear transitio	n		
	(C)	Electronic transition		(d)	None	e of these			
80.	Einste	ein's theory of specific heat a	gree w	vith ex	perim	ental vesuts	at		
	(a)	All temperature	(b)	All lo	ow ten	nperature on	ıly		
	(C)	All high temperature		(d)	Does	not agree			
81.	Debye	e modified theory of specific	of solic	d by co	onside	ring			
	(a)	Elastic vibration theory of s	olids		(b)	Free Vibra	tion th	neory	
	(C)	Non-harmonic vibration the	ory		(d)	None of the	ese		
82.	Debye	e's theory of specific heat agr	ree wit	h expe	erimer	ntal results a	ıt		
	(a)	All temperature	(b)	Spec	ially a	t low tempe	rature	•	
	(C)	Only at high temperature		(d)	Does	not agree			
83.	The D	Debye's theory of specifics he	at expl	ained					
	(a)	the constant value of sp. he	at						
	(b)	The famous T^3 law, at low te	empera	ature					
	(C)	The variation of sp. heat at	high te	empera	ature				
	(d)	The classical theory of Sp. h	neat						
84.	The s	pecific heat of solids (metals)) at lov	v temp	peratu	re is			
	(a)	proportional to T	(b)	prop	ortion	al to T ²			
	(c)	proportional to T ³	(d)	Inde	pende	nt of temper	ature		
85.	Speci	fic of a substance depends or	r its.						
	(a)	mass (b) volume	(C)	temp	peratu	re	(d)	nature	
86.	If the	specific heat of a substance	is infin	ite, it	mean	5			
	(a)	heat is given out							
	(b)	heat is taken in							
	(C)	No change in temperature t	akes p	lace w	vhethe	er heat is tak	en in (or taken o	out
	(d)	All the above							
87.	The a	mount of heat requires will b	e mini	mum	when	a body is he	ated t	hrough	
	(a)	1 K (b) 1 ^o C	(C)	$1^{0}F$		(d) It will b	e sam	e in all ca	ses

88.	The q deper	The quantity of heat which crosses unit area of a metal plate during conduction lepends upon											
	(a)	Density of	the m	etal				(b)	the ten	nperati	ire grad	dient	
	(C)	The tempe	rature	e of the	e heat	er		(d)	Area of	f the m	etal pla	ite	
89.	The mode of transfer of heat which requires no medium in												
	(a)	Radiation				(b)	Cond	uctior	ı				
	(C)	convection	l			(d)	Comb	ousior	1				
90.	The mode of transfer of heat which is possible only in fluid is												
	(a)	conductior			(b)	Conve	ectior	1					
	(C)	Combusion	ı			(d)	Radia	tion					
91.	Under steady state, the temperature of a body												
	(a)	increases with time											
	(b)	Decreases with time											
	(C)	does not change with time and in same at all parts of the body											
	(d)	does not change with time but is not same at all parts of the body											
92.	The coefficient of thermal conductivity of a metal depends upon												
	(a) the m) temperature difference between two side (b) Thickness of e metal									ckness of		
	(C)	Area of pla	ate						(d) N	one of t	the above	
93.	Thoug	gh air is bad	l cond	uctor	yet a k	oody k	ept in	air los	ses heat	quickl	y. This	is due to	
	(a)	Conduction	n	(b)	Conv	vection	ı	(C)	radiati	on (d	l) Sun		
94.	On cold morning, a metal surface will feel colder to touch than a wooden surface because												
	(a) metal has high specific heat (b) metal has high the conductivity									thermal			
	(c) condu	metal has activity	low sp	ecific	heat			(d)	metal	has	low	thermal	
95.	Newt	on's law of o	cooling	g is a s	specia	l case	of						
	(a) Plank	Stefan's la 's law	W		(b)	Botz	man la	W	(c) Wi	en's lav	w (d)	
96.	Which	n of the follo	owing	is the	examj	ple of	ideal b	lack k	oody				
	(a) these	Charcoal	(b)	Blacl	k boar	d	(C)	A p	in hole :	in a bo	x (d)	None of	
97.	Which	n law explai	ns full	y the s	spectr	um of	radiati	ion					
	(a) law	Stefan's	(b)	Wien	ı's law	(C)	Planc	k's la	W	(d)	Raylei	gh Jean's	

98.	Thern	nal radiations are									
	(a)	electro magnetic wave (b) Mechanical transverse wave									
	(C)	Mechanical longitudinal wave (d) None of these									
99.	For a perfect black body, the energy radiated per sec per unit area in directly proportional to										
	(a) Temp	the absolute Temp. (b) The square of absolute erature									
	(c) Temp	The Cube of absolute Temperature (d) The fourth power of absolute erature									
100.	. The absorption coefficient of a perfect black body in										
	(a)	0 (b) 1 (c) infinite (d) -1									
101.	A per	fect black body emits radiations of									
	(a)	All wavelength (b) Only one wavelength									
	(C)	A selected wavelength (d) No radiations are emitted									
102.	Accor	ding to Kirchhoff's law, a good absorber of radiation is									
	(a)	a good emitter (b) a bad emitter									
	(C)	Can not emit radiation (d) May be a good emitter or a bad emitter									
103.	Frann	hofer lines of solar spectrum are absorbed by									
	(a)	Wien's law (b) Stefan's law									
	(C)	Circhhoff's (d) Plank's law									
104.	Accor	ding to wien's displacement law									
	$(a)\lambda_m =$	$constant(b)\lambda_m T = constant$									
$(c)\lambda_m$	$T^2 = cons$	$stant(d) \lambda_m^2 T = constant$									
105.	The te	emperature of the sun can be measured by									
	(a)	Kirchhoff's law (b) Planck's law									
	(C)	Stefan's law (d) Wien's law									
106.	The to	otal radiation energy emitted by a black body									
	(a)	increases as Temp. increases									
	(b)	Decreases as Temp. increases									
	(C)	Does not change with change in temp.									
	(d)	Sometimes increases some time decreases with increase in temp.									
107.	The in	ntensity of black body radiation of all wavelengths are									
	(a)	equal (b) Not equal- but increase with wavelength									
	(c) wavel	Maximum at a particum wave length decreasing but increase with length									
	(d)	Maximum at very low & very high wavelengths									

108.	As Te maxir	emperature of Bl num, shifts	ack b	ody increas	es, th	e wav	velengtl	h at v	vhich In	tensit	y in			
	(a)	Towards lower w	vavele	ngth side		(b)	No Ch	ange						
	(C)	Towards higher wavelength side					(d) Irregularly changes							
109.	The w	wien's Displacement law agrees with experimental results specially at												
	(a)	lower frequencie	es			(b)	Highe	r frequ	uencies					
	(C)	At all frequencie	S		(d)	Does	not ag	ree at	any freq	uency	y			
110.	The R	ayleigh Jean's law	v agre	es with expe	erimen	tal re	sults at							
	(a)	lower frequencie	es			(b)	Highe	r frequ	uencies					
	(C)	At all frequencie	S		(d)	Does	not ag	ree						
111.	The P	lanck's law of rad	iation	agrees with	n exper	riment	tal resu	lts at						
	(a)	Lower frequency	rang	e	(b)	highe	er frequ	iency i	range					
	(C) frogu	All frequency rai	nges			(d)	Does	not	agree	at	any			
112	Planc	k's radiation form	ula is	the foundat	ion of									
112.	(a)	guantum Mechai	nics	the foundat	1011 01	(h)	Classi	cal Me	chanics					
	(u)	Statistical Mechanics					Computer Science							
112	(C) Whiel	of the following		ot ho ovolair	nd by	(u) Dlano	vers thou	are of	radiation					
115.	(a)	Nouten la lour of motion												
	(\mathbf{c})	Bhor's theory of	Hydro	ngen Atom	(D)	(d)	Comp	ton eff	ect.					
114	A hial	h frequency range	s the	nlank's rad	iation	formu	la conv	erts in	ito					
	(a)	Ravleigh Jean's l	aw	plank 5 rad	iutioii	(b)	Wien's	s displa	acement	law				
	(c)	Stefan's law				(d)	None	of thes	se	14.17				
115.	15 The average velocity of gas molecules in a gas in equilibrium is													
	(<i>a</i>)∝ ¬	$\sqrt{T}(b) \propto T(c) \propto T^2(d) Z$	Zero		5	1								
116.	The 1	r.m.s. velocity of g	jas mo	olecules at tl	he san	ne tem	peratu	re are						
	(a)	the same	-				-							
	(b)	directly proporti	onal t	o the molect	ular w	eight								
	(c)	Inversely propor	tional	to the squa	re roo	t of th	e moleo	cular w	veight					
	(d)	Inversely propor	tion to	o the molecu	ılar we	eight								
117.	Whic	h of the following	g gase	es possesses	s maxi	mum	r.m.s. v	velocit	y, al bei	ng at	t the			
same	e temp	erature												
	(a)	Oxygen	(b)	Carbon die	oxide		(c)	air	(d)					
Hydı	rogen													
118.	The	absolute tempera	ture o	of a gas inc	crease	s 3 ti	mes, th	ie r.m	.s. veloc	ity of	the			
mole	ecule w	vill become							–					
	(a)	3 times	(b)	9 times		(c)	1/3 tin	nes ($(d)\sqrt{3t}$ ime	S				

119. The temperature of a gas increases from $27^{\circ}C$ to $927^{\circ}C$, the r.m.s. velocity of its molecules becomes

(a) Twice (b) half (c) Four times (d) One-fourth

120. The Kinetic energy of gases, one assumes that the collisian between molecules are

- (a) perfectly elastic (b) Perfectly inelastic
- (c) Partly inelastic (d) None of these
- 121. The temperature of gas is produced by
 - (a) the potential energy of its molecules
 - (b) the kinetic energy of its molecules
 - (c) the attractive force between its molecules
 - (d) the repulsive force between in molecules
- 122. In the equation PV=RT, V represents the volume of
 - (a) any amount of gas (b) One gram molecule of gas
 - (c) one gram of gas (d) one litre at gas

123. Under which of the following conditions is the law PV=RT obeyed most closely by a real gas

- (a) High pressure and high temperature
- (b) Low pressure and low temperature
- (c) Low pressure and high Temperature
- (d) High pressure and low Temperature

124. Critical pressure of a gas obeying Van der waal's equation in given by

(a) 3.b (b)
$$\frac{a}{27b^2}$$
 (c) $\frac{27a}{b^2}$ (d) $\frac{b^2}{a}$

125. Critical temperature of a gas obeying vander wall's equation is given by

$$(a)\frac{8a}{27Rb}(b)\frac{a}{27b^{2}R}(c)3b(d)\frac{1}{27Rb}$$

126. The Critical volume of a gas obeying Van der Waal's equation is

$$(a) \frac{8a}{27Rb}(b) \frac{a}{27b^2R}(c) 3b(d) \frac{1}{27Rb}$$

127. If 'H' heat given to a system, produces W work then

(a)
$$W = \frac{J}{H}(b) W = J \cdot H \cdot (c) H = \frac{1}{W}(d) \frac{H}{W} = unpredictable$$

- 128. In S.I. system, the value of Mechanical equivalent of heat (J) is
 - (a) 0 (b) 4.2 (c) 1 (d) 4.2×10^3
- 129. Which of the following statement is wrong ?
 - (a) Work done is proportional to the Heat taken
 - (b) Temperature of a body rises as it absorbs heat
 - (c) Work done is inversely proportional to the Heat taken
 - (d) Entropy of a system increases if it absorbs heat

130. The amount of heat required to increase unit mass of a gas by one degree is called its

	(a)	Heat capacity		(b)	Latent hea	at					
	(c)	specific heat		(d)	One Calor	rie					
131.	The amount of heat required to increase one gm of pure water by 1° C is equal to										
	(a)	Specific Heat		(b)	(b) One Caloric						
	(c)	Heat Capacity		(d)	One Joule						
132.	The S.I. units of specific Heat is										
	(a)	Caloric/gm ⁰ C	(b)	Calor	ric/gm	(c)	Joule/	/kg (d))		
Joule	/Kg ⁰ K										
133.	A gra	ph plotted between P	and (1/	V) of a	a gas under	consta	ant ter	nperature	e will be a		
	(a)	Straight line	(b)	ellips	se		(c)	Parabola	a (d)		
hype	rbola										
134.	At wł	nat temperature unde	r consta	ant vol	ume is the	pressu	re of a	gas dou	ble that at		
$0^{0}C$											
	(a)	546°C	(b)	273°	С		(c)	100°C			
	(d) 1	73°C									
135.	PV ha	as the same unit as									
	(a)	Temperature	(b)	work		(c)	Force	e (d)	Power		
136.	If the pressure of a closed vessel is reduced by drawing out some of the gas, the										
	mean free path of molecules in side the vessel										
	(a)	increases (b) dec	creases	(c) r	emains unc	hange	d (d) 1	become Z	Zero		
137.	The temperature of a gas enclosed in a chamber is increased from 300 K to 600 K.										
	The pressure becomes double because the										
(a) mean molecular velocity becomes $\sqrt{2}$ fold											
	(b)	(b) root mean square velocity becomes $\sqrt{2}$ fold									
	(c) energy transferred to the wall become half										
	(d)	None of these									
138.	The speeds of 5 molecular of a gas are 2,3,4,5,6 then the r.m.s. velocity of these										
	molecules will be										
	(a)	2.91 (b) 4.0	0	(c)	3.52		(d)	4.24			
139.	At wh	nich temperature wou	ld the r	nolecu	lles of a gas	s have	twice t	the avera	ge kinetic		
	Energ	gy they have at 27ºC									
	(a)	313°C (b)	373 ⁰	С	(c)	393 ⁰	С		(d)		
		586°C									
140.	The F	Fraunhoffer lines can	be expla	ained u	using						
	(a)	Kirchchoff's law	(b)	Stefan's law							
	(c)	Wien's law		(d)	Planck's la	aw					

141.	The radiation loss from the surface of a perfectly black body is proportional to										
	(a)	Temperature T		(b)	T^2		(c)	T^3		(d)	T^4
142.	A ter	nperature degree	on tł	ne Kelv	rin scal	le in	the sa	ame as	5		
	(a)	a temperature a	s cele	esim	scale)	(b)	a T	'emp. in	Fahr	renheit scale
	(c)	a temperature ir	n Rea	nmer s	cale		(d)	No	other s	cale	
143.	The t	temperature of th	e sun	is mea	asured	with	ı				
	(a)	Platinum thermo	omete	er		(b)	gas	s ther	nomete	r	
	(c)	Pyrometer				(d)	The	ermoc	ouple T	herm	ometer
144.	The t	temperature of th	e sun	in app	proxim	ately					
	(a)	1000k		(b)	7000	K		(c)	10K		(d)
		$10 \times 10^{6} K$									
145.	The a	absolute zero is tł	ne ter	np. at v	which						
	(a)	water freezes					(b)	all	substa	nces	exist in solid
	state										
	(c)	Molecular motio	n cea	ises			(d)	No	ne of th	le abc	ove
146.	If 50	0 cal of heat is giv	ven to	o 1 kg i	ice, the	en wl	hat w	ill be t	the tem	p of tl	he mixture
	(a)	100°C		(b)	50°C		(c)	0°0	2	(d)	80°C
147.	The 1	number of degree	s of f	reedon	n of a t	riato	omic g	jas in			
	(a)	3	(b)	5		(c)	6		(d)	7	
148.	In ca	lculating the sp.	heat	of a n	nonoat	omic	solid	l, it is	assume	ed tha	at its potential
	ener	gy in equal to									
	(a)	3RT	(b)	$\frac{3}{2}RT$		(c)	$\frac{5}{2}R$	Т	(d)	Non	e of these
149.	The v	value of yfor a tri	atom	ic gas i	is						
	(a)	1.67	(b)	1.4		(c)	1.1	9	(d)	Non	e of these
150.	In a	real gas, due to	inter	molec	ular fo	orce,	Press	sure i	ncrease	s by	a factor (then
	press	sure		of					ideal		
	gas F	P)									
	$(a) \frac{a}{a}$	$b \frac{a}{a}(c) \frac{a}{a}(d) \frac{a^2}{a}$									